企业新闻
医用3D打印的新工艺

药品回收网站:新工艺、新材料、新的设计理念不断出现,有力地推动骨科植入制造业的发展。在新工艺方面:医用金属3D打印的出现。使我们得以直接打印出可植入人体的植入物;假体多孔表面的制造及相关部位的设计将发生根本性的变化;个体化植入物的制造将以更快的速度和更经济的方式实现,更贴近临床的需求;一些过去难以实现的结构设计将成为现实。随着该项技术的发展。在新材料方面:PEEK(聚醚醚酮)材料以其优良的制造性能和机械性能,对聚乙烯材料形成巨大的挑战,在脊柱,创伤和关节领域全面进入使用;可降解镁合金的研究在发达国家和中国都取得了可喜的成果,进入临床试用阶段。

应该说,上述均是骨科植入物制造业中的新技术与生命周期的完美结合。值此本文从高端制造技术与生命科学完美结合的角度对医用金属3D打印工艺技术及PEEK生物材料在医疗骨科植入等领域中的应用作研讨。与此同时重点对其技术特征、架构与典型医疗应用的方案作分析说明。

在医疗领域,创新就是生命。在医学研究和临床实践中,医生面临几大挑战:医疗器械、医用产品的精准度和质量需要达到极高的标准;需要在最短的时间,做出对病人高度定制化的治疗方案;因为植入式医疗器械与移植用的组织器官都具有高度的复杂性,而且这些器械或组织器官需要适应不同的患者的特殊情况,从产品的角度这意味着高度的个性化和定制化。用传统方法制造不仅十分困难,还会面临成本大幅上升的困境。面对这新的挑战应用3D打印技术可以为医疗领域带来前所未有的变革,即3D打印技术则非常适合应用于这种需要少量地定制复杂物体的领域。也就是说借力3D打印技术,特别是喷墨式3D打印技术和激光选区熔化(selective laser melting, SLM) 技术,则医生、研究人员和医疗设备制造商可以快速、准确地为患者带来高精度、个性化的医疗器械和治疗计划,达到高效、高质量的治疗效果,提升患者的生活质量。传统数控制造主要是“去除型”,即在原材料基础上,使用切割、磨削、腐蚀、熔融等办法,去除多余部分,得到零部件,再以拼装、焊接等方法组合成最终产品,而3D打印则颠覆了这一观念,无需原胚和模具,就能直接根据计算机图形数据,通过一层层增加材料的方法直接造出任何形状的物体,这不仅缩短产品研制周期、简化产品的制造程序,提高效率,而且大大降低了成本,因此被称为“增材制造”。当前已有医用3D打印设备、医用3D打印应用及医用3D打印材料三个开发方向。值此仅以医用3D打印设备、医用3D打印应用为重点作分析研讨。当今医用3D打印设备有多种类型,其典型而广泛的有喷墨式细胞打印机与磁悬浮医用3D打印机和医用金属3D打印机两大类,在此仅对这两大类作分析。

喷墨式细胞打印机与磁悬浮医用3D打印机喷墨式细胞打印机是最先应用在医用3D打印技术中的设备。这种打印机使用生物墨水或生物细胞丝打印成薄片状组织然后将薄片输出到喷墨打印机的出口处。出口处有一个容器让薄丝状组织层层堆叠在一起以形成组织或器官。 磁悬浮医用3D打印机,在细胞沉积在生物相容性支架的3D打印方法基础上作了改进,采用具有生物兼容性的磁性纳米颗粒作为支架材料,将细胞打印到3D结构上,这种方法被称为磁性悬浮法(MLH)。这项技术是用一种被称为纳米穿梭的磁性纳米颗粒将细胞磁化,再用空间中变化的磁场将细胞悬浮起来,通过这种方法在体外条件下复制体内环境,经过培养之后则形成想要的3D多细胞层结构。改进后成本更低,速度更快。

医用金属3D打印 先述金属3D打印设备的理念。金属零件3D打印技术作为整个3D打印体系中最前沿和最有潜力的技术,是先进制造技术的重要发展方向。按照金属粉末的添置方式将金属3D打印技术分为二类:其一是使用激光照射预先铺展好的金属粉末,即金属零件成型完毕后将完全被粉末覆盖。这种方法目前被设备厂家及各科研院所广泛采用,包括直接金属激光烧结成型(Direct Metal Laser SIntering,DMLS)、激光选区熔化型等;其二是使用激光照射喷嘴输送的粉末流,激光与输送粉末同时工作(Laser Engineered Net ShaDing, LENS),该方法目前在国内使用比较多;其三是采用电子束熔化预先铺展好的金属粉末(E1ectron Beam Melting, EBM),此方法与第1类原理相似,只是采用热源不同。上述中,其激光选区熔化(SLM)技术是金属3D打印领域的重要分支,它采用精细聚焦光斑快速熔化300-500目的预置粉末材料,可以直接获得几乎任意形状、具有完全冶金结合的功能零件。

致密度可达到近乎100%,尺寸精度达20-50微米,表面粗糙度达20-30微米,是一种极具发展前景的快速成型技术,也成为了国内外快速成型领域的热点,而且其应用范围已拓展到医疗及航空航天、汽车、模具等领域。值此仅对SLM设备基本架构及组成说明。 SLM的基本架构是: 由光路单元(光纤激光器、扩束镜相反射镜、扫描振镜、F-θ聚焦透镜)、机械单元(铺粉装置、成型缸、粉料缸及成型密封设备)、控制单元(计算机和多块控制卡)、工艺软件、保护气密封单元几个部分组成。 SLM设备中的具体成型过程:先在计算机上利用pro/e、UG、CATIA等三维造型软件设计出零件的三维实体模型,然后通过切片软件对该三维模型进行切片分层,得到各截面的轮廓数据,由轮廓数据生成填充扫描路径,设备将按照这些填充扫描线,控制激光束选区熔化各层的金属粉末材料,逐步堆叠成三维金属零件。其SLM设备中的具体成型过程如图1所示。 激光束开始扫描前,铺粉辊(装置)先把金属粉末平推到成型缸的基板上,然后激光束按当前层的填充轮廓线选区熔化基板上的粉末,加工出当前层,然后成型缸下降一个层厚的距离,粉料缸上升一定厚度的距离,铺粉装置再在已加工好的当前层上铺好金屑粉末。设备调入下一层轮廓的数据进行加工,如此层层加工,直到整个零件加工完毕。整个加工过程在通有惰性气体保护的加工室中进行,以避免金属在高温下与其他气体发生反应。